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Abstract—The effects of wall heat conduction on a steady laminar combined convection water flow in 2

vertical pipe are investigated numerically. The Prandtl, Reynolds and Grashof numbers of the flow are

fixed at 7.0, 50 and — 10000, respectively, and reverse flow is present in most of the flows considered.

Investigations are carried out as the wall to fluid conductivity ratio and the ratio of the outside to the

inside radii of the pipe wall are allowed to vary. Comparisons with a flow in which no wall solution domain

is considered show that very significant changes in the flow and temperature distributions may be observed
when a wall domain is taken into account.

1. INTRODUCTION

IN MANY theoretical studies of convection flows in
vertical ducts the conduction of heat in the wall of the
duct is overlooked. In practice, especially when large
temperature gradients are present, the temperature
and temperature gradient at the inside of the duct wall
are dependent not only on the thermal properties of
the fluid and the characteristics of the flow, but also
on the thermal conduction in the duct wall. Thus, in
modelling many physical situations, it is desirable to
consider a thermal problem in both the fluid and wall
domains, as well as the momentum problem in the
fluid.

A review of laminar convection in ducts of various
cross-sections is presented by Shah and London [1]
and brief references are made to conjugate problems
which allow for conductance in the wall of the duct.
In recent years more attention has been paid to the
importance of the interaction of the heat transfer
mechanisms in the wall and fluid domains and good
examples of this can be found in the investigations of
Barozzi and Pagliarini [2-4), Mori et al. [S, 6], Zariffeh
et al. {7}, Faghri and Sparrow [8] and Campo and
Rangel [9]. Barozzi and Pagliarini assume a fully
developed velocity profile in the fluid domain and
avoid solving the thermal problem in the fluid domain
by solving the energy equation in the wall using finite
elements in an iterative procedure which involves the
updating of the interfacial temperature after each iter-
ation. The wall solution region in these investigations
is restricted to the heat transfer section so that no
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account is taken of upstream and downstream heat
conduction prior to and after the heat transfer region.
This is also true of the work of Mori ez al., where fully
developed flow profiles are also assumed in cylindrical
and parallel plate geometries, respectively. Here the
problem is solved by assuming the interfacial tem-
perature to be in the form of a power series and
finding the unknown coefficients by solving the energy
equations in the solid and fluid and equating the tem-
perature and heat fluxes at the interface. Zariffeh er
al. and Faghri and Sparrow use a different approach
which again involves the assumption of fully
developed flow in the fluid. They both assume a thin
wall, so the wall solution domain can be replaced by
a suitable boundary condition at the extreme of the
fluid domain and the elliptic energy equation in the
fluid is solved using iterative techniques. Campo and
Rangel make the assumptions of negligible tem-
perature gradients in the wall and fluid domains and
let the velocity profile in the fluid be represented by
its mean value, and thus are able to solve the resulting
ordinary differential equations using an analytic
approach. The problem with the above investigations
is the number of assumptions that are made in order
to simplify the governing equations. In particular no
attention is paid to the possible change of the velocity
profile of the fluid due to the free convection effects,
which must certainly be present in many industrial
applications where large temperature gradients are
often involved.

Many investigations have been carried out into
combined convection flows in which no account is
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NOMENCLATURE
a radius of the inside of the duct wall Re Reynolds number, au,,/v
a* radius of the outside of the duct wall s power of W in the complimentary
A, coefficient of X” sin 54 in the expression function of equation (29)
for 6, near Z = b/(a Re), R = a*/a T temperature
b axial location of the beginning of the u axial velocity
heated region U dimensionless axial velocity. u/u,,
B\, B, constants in the expression for 6,, v radial velocity
near Z = b/(a Re), R = a*/a 14 dimensionless radial velocity, v/u,,
C transformation parameter X local coordinate in the wall near
d position at which the scaling in the axial Z = b/{a Re), R = a*ja
direction is introduced z axial coordinate
f friction factor Z dimensionless axial coordinate, z/(a Re).
f(A) particular integral of equation (29)
g acceleration due to gravity Greek symbols
g{A) part of the complimentary function of « molecular thermal diffusivity
equation (29) B coefficient of thermal expansion,
Gr  Grashof number, gf(T,~ T, )a’ /v’ (—1/p)(0p/0T)
G’ finite difference grid for 0 < Z < d, 0 dimensionless temperature,
0<Rgl Orw = (Trw— T )T~ Ty)
G™  finite difference grid for0 € Z < d, 8,,8,, 6, three finite difference values of 4,
I<R<a%a immediately upstream of Z = b/{a Re)},
G*  finite difference grid ford < Z < oo, R = a%*/a
0< R K dimensional axial finite difference step on
G** finite difference grid for d € Z < o, G™
1 < R<a¥fa A local coordinate in the wall near
h local heat transfer coefficient Z = b/(a Re), R = a*/a
k thermal conductivity of the fluid u dynamic viscosity of the fluid
K, wall to fluid conductivity ratio v kinematic viscosity of the fluid
N number of finite difference steps across 14 dimensionless axial coordinate on G*,
the duct I-1/(1+C(Z—-4d))
NN number of finite difference steps along p variable density of the fluid
the duct Do density of the fluid at T, = T,
NY  number of finite difference steps across ¥ dimensionless stream function
the wall Q dimensionless vorticity.
N number of finite difference steps in the Z-
direction on G* Subscripts
Nu  local Nusselt number, Aa/k € entry value
p pressure f value within the fluid
P dimensionless pressure, m flow average value
Plpottd —gz[B{T . — Ty — 1}/, NN value at the NNth axial location
Pe Péclet number, Re Pr w value within the wall
Pr  Prandtl number, v/a oo fully developed value and the boundary
r radial coordinate temperature value over the final
R dimensionless radial coordinate, r/a section of the duct wall.

taken of heat conduction in the wall, and three good
examples of these in which the axial diffusion terms
in the fluid are retained in the governing equations are
in the papers of Zeldin and Schmidt [10], Chow e al.
[11] and Morton ez al. [12]. In these investigations,
wall temperature or heat flux boundary conditions
are applied at the extreme of the fluid domain. The
governing elliptic equations are then non-dimen-
sionalized, expressed in finite difference form and
solved using relaxation techniques. In the studies of

Chow er al. and Morton er al. situations are con-
sidered where the duct walls are heated over finite
sections and in the investigation of Morton et al.
situations are considered where flow reversals are pre-
sent at one or more places in the flow,

The governing parameters in the conjugate heat
transfer problems mentioned above are, the Péclet
number of the fluid, Pe, the ratio of the radii of the
outside and the inside of the pipe wall, a*/a, the wall
to fluid conductivity ratio, K|, and, where relevant,
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the non-dimensional length of the heating or cooling
sections. The governing parameters in the developing
flow situations listed above are, the Reynolds number,
Re, the Prandtl number, Pr, the Grashof number,
Gr, and, where relevant, the length of the heating or
cooling sections.

In the present investigation, the work of Morton et
al. [12] is extended and a solution is obtained to a
conjugate heat transfer situation by solving the
governing equations in the solid and fluid phases sim-
ultaneously, by means of finite difference techniques
and a relaxation procedure. Several realistic values of
the ratio a*/a are considered for values of X, relevant
to various typical wall materials and with water as the
fluid in the duct. The Reynolds and Grashof numbers
of the flow are fixed for all the investigations so that
comparisons can easily be made, and Gr is chosen to
be large so that in most of the situations considered
flow reversals are present in the fluid.

The results are presented in terms of stream func-
tion and temperature contours around the thermal
entrance of the duct and also in terms of plots of
flow average temperature, local Nusselt number and
friction factor times Reynolds number against axial
distance. The results illustrate the fact that by chang-
ing the conductivity and thickness of a pipe wall the
characteristics of the flow and the heat transfer may
be drastically affected.

2. THE MODEL AND GOVERNING
EQUATIONS

The model consists of steady laminar combined
convection of a fluid with velocity, (v, «), and tem-

infinity conditions:

/llno of symmetry,

T, =T,=T, end
velocity = (0,u)

hested section:
T,=T onr=gs end
velocity =0 onr = a
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perature, T;, in the semi-infinite domain 0 < r < q,
0 < z < oo which is bounded by a wall contained in
the domain a <r < a*, 0 < z < oo where the tem-
perature is given by T, as illustrated in Fig. 1. Ther-
mal boundary conditions are applied at r = a*, so
that the temperature at r = a, which is dependent
upon the properties of both the fluid and the wall, is
able to attain a distribution which is appropriate to a
real physical situation. As a comparison, situations
are also considered where the temperature boundary
conditions are applied at r = g, and no wall solution
domain is considered. However, the following analysis
concentrates on the more complicated situation where
the wall domain is included in the problem. Fluid at
constant temperature, T, is assumed to flow into the
duct at z = 0 with a fully developed parabolic velocity
profile, (0, ».), and the fluid is heated over z > b where
b is chosen to be large enough so that the boundary
condition at z=0 is a good approximation to
= — oo where the flow is fully developed and iso-
thermal. Over the heated section of the tube, z > b,
the temperature of the outside of the tube wall is
maintained constant at T, whilst over the preceding,
‘entry’, section, 0 < z < b, a zero heat flux boundary
condition is applied at the outside of the wall.

The acceleration due to gravity, g, acts vertically
downwards, in the opposite direction to the forced
convection. The fluid is considered to be Newtonian
with constant dynamic viscosity, thermal conduc-
tivity, specific heat capacity and coefficient of expan-
sion. The wall is considered to have a constant thermal
conductivity. Density variations are neglected every-
where except in the buoyancy term of the vertical
momentum equation (Boussinesq approximation).
These assumptions are made in order to keep the

?
a0

"entry’ sections

T
—=x=0onr = s end
or

velocity = Donr = a

z=b

fluid with
velocity (v,u) and
tempersture T,

vall with
tempersture T

£ s

e V

r 8 [y

entry conditions:
T' = T' = T' end
velocity = (0,u)

FiG. 1. Schematic view of the mathematical model and the wall and fluid solution domains for the
cylindrical duct.
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model as simple as possible, although inclusion of
variations in some of the physical properties should
not in theory be difficult to introduce into the numeri-
cal analysis. Viscous dissipation in the fluid is ignored
as it was shown to have only a small effect by Collins
{13].

The governing equations are the continuity, axial
momentum, radial momentum, and energy equations
in the fluid and the energy equation in the wall, and
these can be written, respectively, in the following
form [14]:

du Ov v

'é;+5;+;=0 1)

o ou_ top, [0 10 0
uaz+vér_—p62 &t ralsr) |79
2
G v _Yop |0 10( o) v
“mtaT sttt rala) T
(3)

oT, oT, [T, 108 ( oT,
r” +"W”°‘[az2 tra\ “)

T, 18/ a7, '
°=722—+;5(’W) ©)

where « is the molecular thermal diffusivity, v the
kinematic viscosity, p the density and p the pressure
of the fluid. Equation (5) assumes a steady state and
zero heat generation within the wall. The boundary
conditions for the problem are as follows:

0 oT,
atr=90, 0<z<oc: v=0, —u=0, =0
or or
6)
atr=a, 0<z<o0: v=0, u=0,
oT, oT;
T, =T, ka_ka Y]
oT,
atr=a* 0<z<b: —— =0
or (®)
b<z<ow: T,=T,
atz=0,
OSFSH U=O9 u=u, Tf=TC
- 9)
T (
a<r<a* Tw _p
0z
at z — o0,
0<r<a: v=0, u=u,, T;=T,
10)
oT, (
a<r<at: ——=0.
0z

The velocities u, = u,. correspond to parabolic vel-
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ocity profiles and k; and k, are the thermal con-
ductivities of the fluid and wall, respectively.

The Boussinesq approximation involves replacing
p by p,[1—B(T;—T.)] in the buoyancy term of equa-
tion (2) and by p, elsewhere. Here p, is the density of
the fluid at 7,= T, and B = (—1/p)(0p/0T)) is the
coefficient of expansion with respect to T;. Now sim-
plify equations (1)-(5) using the following non-
dimensionalization :

v=u,V, u=u,U, r=aR, z=aReZ
p=gpoz[ﬂ(Tco_Tc)‘_]]+pour31P~ L
Tf,w = Tac+(Tc—Tac)9fw J

(an

where u,, is a characteristic velocity taken in this study
to be the flow average velocity and Re = au/v is the
Reynolds number of the flow. Defining the stream
function, Y, to satisfy the continuity equation (1) and
introducing the vorticity, Q. as follows

11y 1 oy
= —— — —— = — 2
V=%erizw Y R OR (12)

T RedZ OR (13)

and eliminating the pressure between equations (2)
and (3), equations (1)-(5) reduce to the following
non-dimensional form:

1 8 Y Loy
OR=eszztor "rar (Y
Ly 1oy Quy 100
ROZOR ROROZ R*OZ  Re*OR?
#Q 160 Q  Grob s
dR? T ROR R RedR (13)
Loyoo 10p oo 1 [1 &% 26 1o
ROZOR RORGZ Pr |Re:0Z° OR* ROR
(16)
1 8%, 0%, 106,
“R:azz T oRE TROR a7

where Gr = gB(T.— T,,)a’/v* is the Grashof number
and Pr = v/a the Prandt]l number. Boundary con-
ditions (6)—(10) become:

00
atR=0, 0<Z<ow: Yy=3 Q=0, 5;%:'0
(18)
0
atR=1, 0<Z<0: Yy=0 B—R_O
a0, 06,
ow = gfs Krﬁ - E‘R (19)
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a0
= g* Rt S
at R=a*/a, 0<Z <b/(aRe): 3R 0 20)
bj(aRe) < Z<w: 0,=0
atZ=0, )
0SR<1: y=4(1—-R)?, Q=4R, 6=1]
a0,
1<R<a"‘/a: a—z‘=0
(2D
<
as Z— oo,
0<SR<1: y=3(1-R»? Q=4R, 9f=0»
1<R<a*fa: —==0

(22)

where K. = k/k, is the fluid to wall conductivity ratio.

The elliptic equations (14)—(17) give the desired
description of the problem under consideration and
they must be solved subject to boundary conditions
(18)—(22). The governing parameters in the problem
are thus the Reynolds number, Re, the Prandtl
number, Pr, the ratio of the Grashof to the Reynolds
number, Gr/Re, the fluid to wall conductivity ratio,
K., and the ratio of the radii of the outside and the
inside of the tube wall, a*/a.

3. THE SOLUTION TECHNIQUE

In order to satisfy boundary conditions (22) when
solving the above problem a scaling is used in the axial
direction. This scaling, as used in Keen [14], Morton
et al. [12] and Zeldin and Schmidt [10], is applied over
the region d < Z < oo and is defined as

{=1-1/(1+CZ-d)) or Z=(/O))/1-0)+d
23)

where £ is a new axial variable which lies in the range
0<¢<1, Cis a transformation parameter to be
defined later and Z = d is a station far enough down-
stream from Z = b/(a Re) for the differences caused
by the wall to be negligible. Equations (14)—(17) under
this transformation become

1 62111 df2 oy d¢
““F[a?z(a‘z)*a—ca?
%y 1oy
aR* "RR WY
1dfjowoa oo Qo
RdAZ| 8 9R BR & R &¢
__L [ dey o d
=Re?|2e7\az) T 3 az?
0 10 Q Gr 00,
tIRTRIR R " RedR

Lafaa_wa)

RdZ| 8¢ 6R R ¥¢
_ L1 (o6 aly o6 dC
T Pr|Re*| 862 \dz/) ' é¢ dZ*°
0%, 186,
+W+§ﬁ} (26)
0o L |90 (ALY 26, dC
" Re?| 082 \dZ 8¢ dz?
F, 130, o
taRe TRaR ¢

The problem can now be split into four solution
domains, these being 0 £ Z<d, 0 < R<1 where
equations (14)—(16) and boundary conditions (18),
(19) and (21) for ¥, Q and 6; apply, d < Z < w0,
0 < R < 1 where equations (24)—(26) and boundary
conditions (18), (19) and (22) for ¥, Q and 6; hold,
0< Z<d, 1 <R < a*/a where equation (17) and
boundary conditions (19)-(21) for 8, apply and
d< Z < o, 1 < R < a*/a where equation (27) and
boundary conditions (19), (20) and (22) for 6,, hold.
To solve the problem these equations and boundary
conditions are expressed in finite difference form on
the four regular grids G*, G°, G™ and G**, where G*
covers the domain 0 € Z € d,0 < R < 1 and consists
of N+1 points in the radial direction and NN+1
points in the axial direction, G° covers the domain
d< Z < 0,0 < R < 1and consists of N+ 1 points in
the radial direction and N®+1 points in the ¢-direc-
tion, G™* covers thedomain 0 € Z < d, 1 < R< a%/a
and consists of N¥+1 points in the radial direction
and NN+ 1 points in the axial direction and G** covers
the domain d < Z < 00, 1 < R < a*/a and consists of
N¥+1 points in the radial direction and N°+ 1 points
in the ¢-direction. The solutions on these two grids are
matched up at Z = d and the value of the parameter C
is chosen so that the step size between the axial
locations Zyy,, and Zyy,; = d is the same as the
distance between axial locations Zyy, , and Z,,. This
leads to {12]

C = 1/((N*=DK) (28)
where K = d/NN is the finite difference step size in the
axial direction on G* and G™.

Central differences are used in the radial direction
for both first and second derivatives, however
attempts to do the same in the axial direction produce
oscillations in the solution. These oscillations are
overcome by using either backward or forward differ-
encing in the axial first derivative terms in the fluid,
depending upon whether the flow at a particular point
is in the same or the opposite direction to the forced
convection, respectively. The vorticity of the fluid at
the inside of the duct wall is determined to second-
order accuracy using Taylor series expansions of ¢
and Q at R =1, the fact that éy/0R=0 at R=1,
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and equations (14) and (24) evaluated at R = 1. The
temperature at the centerline is given to second-order
accuracy using ¢6/¢R = 0 at R = 0 and equations (16)
and (26) evaluated at R = 0. The derivative thermal
boundary condition at R =1 is dealt with by using
first-order differencing on each side of R = 1, the con-
tinuity boundary condition at R = | is automatically
satisfied by using the last point in the fluid as the first
point in the wall and the zero heat flux boundary
condition at R = a*/afor0 < Z < b/(a Re) is satisfied
by using first-order backward differencing. The solu-
tion to the problem is obtained iteratively by sweeping
across the grids G°, G™, G* and G** from Z =0 to
& = 1, relaxing the relevant finite difference equations
at each point on the four grids. In the calculations
the finite difference equations for Q and 6; must be
underrelaxed, those for 8; more so than those for Q,
however, a relaxation parameter of unity is used for
the finite difference equations involving ¥ and the
finite difference equations for 6, are overrelaxed.
Problems, in terms of accuracy and convergence, can
occur at R = a*/a for the finite difference variable
0, just upstream of Z = b/(a Re), due to the dis-
continuity in temperature gradient at this point. This
is also found to cause convergence problems for the
variable Q on the inside of the duct wall in the vicinity
of Z = b/(a Re). The inaccuracies are overcome in the
following manner. Consider a new coordinate system,
(X, 4), inside the wall as shown in Fig. 2. In terms of
the new coordinates equation (17) becomes
¢*6, 106, 1 0%,

‘= tyax T e

29

The particular integral, 8, = f(4), of equation (29)
must be /=0 in order to satisfy the two boundary
conditions f,, = 0 for . = 0 and 00,,/é4 = O for 4 = =.
To find the complimentary function put 6, = X°g(4),
which leads to

where s = 1,2, 3/2,... and the coefficients A4, are to be
determined from the boundary conditions. Hence to
o(X?%)

. = B,X'“sin 22+ B,X  “sin 322 (3])

where By = 4, ,and B, = 4;,. Putting2 =7n. . he
finite difference value of 8, immediately upstreum of
Z = b/(a Re) can be expressed as

0, =B k' "—Bw"" (32)

where « is the dimensional axial finite difference step
on G™*. Now B, and B, can be determined using
the two finite difference values for 6, immediately
upstream of 8, to give

0,=2"%,-3 "2, (33)

where 6, and 8, are as indicated in Fig. 2. Equation
(33) gives an accurate value for ), so long as k « 1,
since this implies that X « 1.

Despite the above refinements, problems with very
slow convergence are encountered upstream of
Z = bj/(a Re) when K, becomes large (> 100). This is
due to the fact that the ‘entry’ region between Z = 0
and b/(a Re) is not long enough to allow the heat in
the wall to conduct as far upstream as it would like.
The thermal wall boundary condition (21) will there-
fore be isolated causing inaccuracies and slow con-
vergence. These problems could be overcome by intro-
ducing a second scaled region going upstream to
Z = —oo0, this, however, is beyond the scope of this
investigation. For the above reasons the investigations
in this study are restricted to situations for which
K, < 50 where accurate solutions can be obtained.

Convergence is assumed to have occurred when the
average change in the finite difference variables
between consecutive iterations has fallen below 107%.
This value is smaller than would normally be required
because of the slow convergence of the variable Q for
the reasons discussed above. When the average change

0, =3 AX sin s/ (30)  in all of the finite difference variables falls below 10~¥,
fluid domain 7 = b/aRe
R =1
wall domain
X
8y 8, 6, by
3 R =3a"a
96
boundary cond!tions _¥ _ g boundery conditions 8, = 0
AN

FI1G. 2. Schematic view of the (X, 2) coordinate system within the wall in the vicinity of Z = b/(a Re) and
R = a*/a.
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the maximum change in the variable £ is generally
just below 10~ %, For some situations convergence may
be achieved more quickly by using existing solutions
as an initial guess for new calculations.

4. RESULTS

The results are presented in such a way that situ-
ations with and without wall solution domains can be
compared with each other for the same values of the
parameters Re, Pr and Gr. Several realistic values of
the ratio, a*/a, are considered for values of X, relevant
to various typical wall materials and with water as the
fluid in the duct. The Reynolds and Grashof numbers
of the flow, Re and Gr, are fixed for all the inves-
tigations at 50 and — 10000, respectively, and Pr is
given the value 7.00, so that the fluid can be thought
of as being water. The Grashof number is chosen to
be large so that in most of the situations considered
flow reversals are present in the fluid. The value of
b/(a Re) is chosen to be 0.5, so that the entry length
is long enough for Z = 0 to be a good approximation
to Z = —co. The values for N, N, NN and N* are
chosen to be 40, 20, 200 and 200, respectively.
Calculations carried out with N= 20, N*= 10,

a'/a

1.25 1.4

(a)

Fig. 3. Contour plots of stream function (a) and temperature (b) for X, = 50, as &*/a is varied.

Y33

No wall 1.4
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NN = 100 and N* = 100, suggest that the above grids
are sufficiently fine to give an accurate solution,
and calculations carried out with N = 60, N* = 30,
NN = 300 and N° = 300, suggest that the results pre-
sented here for the temperature are correct to within
about 6 x 10 *in the fluid and 3 x 10~ *in the wall, in
general, although at Z = b/(a Re), R =1 the errors
were found to be as large as 3 x 10~ . However, these
errors had little effect on the rest of the solution.

The parameter K, is chosen to have the values 50,
5 and 0.5, and since the thermali conductivity of water
is in the range 0.55-0.68 W m~' K~ [15], this covers
wall materials with thermal conductivities in the range
0.275-35.0 W m~' K~' This range covers pipe
materials such as stainless steel, chrome steel and
many plastics. Typical values of the ratio a*/a, for
piping in use in common industrial applications lie in
the range 1.1-1.4 [16]. Thus a*/a is chosen to have the
values 1.1, 1.25 and 1.4, and nine results are presented,
each with a different combination of the parameters
K. and a*/a, and compared with a result obtained
from a model in which the wall solution domain is
omitted.

In Figs. 3(a) and (b) contour plots of stream func-
tion and non-dimensional temperature are displayed,

a"/a

s
0.5

0.50

e

0.50

131 TS

(REEALL:

0.8

T
[

(b)
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respectively, for the case K, = 50. The streamlines
plotted are for y in the set {0.0, 0.05, 0.1..... 0.4,
0.45, 0.5, 0.501, 0.502}. where y = 0.0 is the stream-
line along the wall, and the temperature contours
are for f;, in the set {0.1, 0.2,..., 0.8, 0.9}, where
;.. = 0.9 is the contour nearest 1o the entrance of the
pipe. The first plots are from the investigation with
no wall solution domain and they are compared with
plots obtained using solutions from the wall problem
with a*/a = 1.1, 1.25 and 1.4, respectively. It can be
seen from the temperature contours that the effect of
the large value of X, is to conduct the temperature
applied for Z > 0.5 a significant distance upstream,
within the wall. This distance becomes greater as the
value of a*/a increases. This upstream axial con-
duction in the duct wall causes a significant pre-heat-
ing of the water in the tube and this in turn means
that the recirculation region at the centre of the pipe
begins to form further upstream.

In Figs. 4(a) and (b) K, is taken to be 5 and contour
plots of ¥ and 0;, are again displayed. For these
situations the effects of axial wall conduction are much
less significant and, although a certain amount of
upstream conduction can be seen to be present in the
temperature contours, the effects of convection on the

a'/a

No wall 1.1

(@)

P. J. HeGGS et al.

heat transfer process can be seen to have a major effect
on the temperature distribution on the inside of the
duct wall. In particular, for the case a*ja = 1.4.
the temperature contour 8, = 0.1 does not pass into
the fluid until Z » 0.9. The beginning of the recircula-
tion region is. as a result. moved further downstream.
Comparing Figs. 3 and 4 it secems reasonable to
assume that there will be a value of K, for which the
streamlines and temperature contours remain
approximately fixed as a*/a is varied. In Figs. S(a)
and (b) contour plots of ¥ and 8, are presented for
K. = 0.5 which corresponds to a wall material that is
a relatively poor conductor. The penetration of the
temperature can be seen to be very restricted from
Fig. 5(b) and this causes a more gradual development
in the velocity profiles. Reverse flow is present for
a*/a = 1.1, the recirculation beginning at around
Z = .92, however, no reverse flow at all is present in
the flows for a*/a = 1.25 and 1.4. The wall is in fact
acting more like an insulator than a conductor,
although a good insulating material would normally
have K, < 0.05 for these particular flows.

The flow average temperature. 6. local Nusselt
number, Nu, and friction factor, f, for the flows under
consideration here are defined as follows [14]:

a'/a

No wall 1.

(h)

FiG. 4. Contour plots of stream function (a) and temperature (b) for K, = 5. as a*/a is varied.
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a'/a

No wall 1.4

(@)

O = -2 rl a—wﬁrdR {34)
b3

Nu= ——ﬁl / 0,—0 5

R,/ Co O G

Ref =8 (3¢)

Plots of 8, Nu, and Ref, as defined by equations
(34)-(36), respectively, are displayed in Figs. 6(a)—(c),
respectively, for each of the flows displayed in Fig. 3.
The flow average temperature is seen to be affected to
a small extent just upstream of Z = 0.5, where the
sharp drop in 8, is rounded off as a*/a increases.
However, downstream the plots are almost indis-
tinguishable as 8, falls away to 0. In Fig. 6(b) the
local Nusselt number is seen to take a finite value well
upstream of Z = 0.5, when the wall solution domain is
included in the problem. At first Nu becomes negative
because 8,.,> 6, however, at some point for
Z < 0.5 the sign of 8,,— 8|, _ , changes from negative
. to positive and Nu becomes infinite and changes sign,
as can be seen from Fig. 6(b). A further peak is
observed in Nu at Z = (.5, where a rapid decrease
in §;, at the inside of the wall causes the value of
(06/0R) .. , to increase very quickly. Beyond Z = 0.5

(b)
FiG. 5. Contour plots of stream function (a) and temperature (b) for K, = 0.5, as a*/a is varied.

very little difference in the plots can be observed, as
the values decrease towards the usual fully developed
value of 1.83 for a flow without a wall solution
domain. From Fig. 6(c) the value of Ref is seen to rise
earlier from its fully developed value of 32 as a*/a is
increased. This is as would be expected, because the
axial conduction in the pipe wall causes the velocity
profile in the fluid to start developing upstream of
Z=0S5.

In Figs. 7(a)-(c), 6., Nu and Ref are displayed,
respectively, for the flows described in Fig. 4. The
value of @_, is seen to decrease more slowly as a*/a is
increased in Fig. 7(a). This is as would be expected
from the temperature plots in Fig. 4(b). In Fig. 7(b)
the behaviour of Nu is similar to that observed in Fig.
6(b), however, the singularities occur much closer to
Z = 0.5 since the effects of axial wall conduction are
much less for these flows. The fully developed values
are seen to be slightly lower than the value of 1.83
from the flow without a wall solution domain. The
values of Ref in Fig. 7(c) illustrate the slower devel-
opment of the velocity profile as a*/a is increased,
as would be expected from the streamline plots in
Fig. 4.

In Figs. 8(a)—(c), 0., Nu and Ref are displayed,
respectively, for the flows described in Fig. 5. For each
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Fi1G. 6. Plots of flow average temperature, local Nusselt number and friction factor times Reynolds number
against axial distance for K, = 50 and the indicated values of a*/a.

(a)

ot Lo 10.0 Z 100. &

100.8

[ .0 0o Z

(b}  soe

Nu

0.0}

o0 4

100.0

s Sy X

Fi1G. 7. Plots of flow average temperature, local Nusselt number and friction factor times Reynolds number
against axial distance for K, = 5 and the indicated values of a*/a.

of 8., Nu and Ref, the trends recognized in Fig. 7 are
continued to a much greater extent, as the velocity
and temperature profiles develop more slowly due to
the lower value of K.

5. CONCLUSIONS

In this paper, solutions to a combined convection
flow in a cylindrical geometry are obtained, when

the thermal boundary conditions are applied at the
outside of a wall solution domain, inside which the
temperature is allowed to vary in both the axial and
radial directions. Solutions are obtained for values of
the fluid to wall conductivity ratio, K,, in the range
0.5-50, and for values of the ratio of the outside to
the inside radii of the wall, 4*/a, in the range 1.1-1.4.
The flows and temperature distributions are seen to
be greatly dependent upon the value of X, with sig-
nificant upstream effects being observed for large
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F1G. 8. Plots of flow average temperature, local Nusselt number and friction factor times Reynolds number
against axial distance for K, = 0.5 and the indicated values of a*/a.

values of K, and significant downstream effects being
observed for small values of K,. These effects were
found to be exaggerated for larger values of the ratio
a*la.

In the recent literature on conjugate heat transfer
problems many assumptions are inherent in the math-
ematical representations and in particular, no account
is taken in any of the investigations of the devel-
opment of the velocity profile within the fluid due to
the effects of free convection. In this paper the full
elliptic equations, in both the fluid and wall domains,
are solved for the first time and results are presented
for situations where flow reversals are present. The
conclusion to be drawn from this investigation is that
in many situations the wall of the flow domain may
play a significant part in the characteristics of both
the flow and the heat transfer. Careful thought must
be taken before discarding the wall domain from the
thermal problem, especially with the Reynolds num-
ber of the flow is relatively low.
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EFFETS DE LA CONDUCTION THERMIQUE DANS LA PAROI SUR LE
DEVELOPPEMENT DES ECOULEMENTS AVEC RETOUR COMBINES DE CONVECTION
DANS DES TUBES VERTICAUX

Résumé—On étudie numériquement les effets de la conduction thermique sur un écoulement d'eau

laminaire, permanent. mixte et couplé. Les nombres de Prandtl. Reynolds et Grashof sont respectivement

fixés a 7.0. 50 et — 10000 et le renversement d'écoulement est présent dans la plupart des écoulements

consideérés. Des essais sont faits en rendant variables le rapport des conductivités paroi-fluide et le rapport

des rayons extrémes de la paroi. Des comparaisons avec un écoulement dans lequel on ne considére pas

I'influence de la paroi montrent que des changements trés sensibles sont obtenus dans I'ecoulement et dans
les distributions de température quand on prend en compte I'influence de la paroi.

EINFLUSSE DER WARMELEITUNG IN DER WAND EINES SENKRECHTEN ROHRES
AUF DIE AUSBILDUNG VON GEMISCHT-KONVEKTIVEN
REZIRKULATIONSSTROMUNGEN

Zusammenfassung—Der EinfluB der Wirmeleitung in der Wand eines senkrechten Rohres auf die stationire
laminare gemischte Konvektionsstrdmung von Wasser wird numerisch untersucht. Die Prandtl-. Reynolds-
und Grashof-Zahl wird mit 7.0. 50 bzw. — 10000 angenommen. In den meisten der betrachteten Fille tritt
eine Riickstromung auf. Die Untersuchungen werden fir unterschiedliche Verhiltnisse der Wirme-
leitfahigkeit von Fluid und Wandmaterial sowie fiir unterschiedliche Verhiltnisse von AuBlen- und
Innendurchmesser durchgefiihrt. Vergleichende Rechnungen ohne Einbeziehung des Wandbereiches
zeigen, daB dessen Beriicksichtigung signifikante Anderungen der Stromungs- und Temperaturverteilung
hervorruft.

BJIMUSAAHHUE TEIUIONPOBOAHOCTH CTEHKH HA PA3BUTHE INPOTUBOTOYHbIX
TEYEHHA B BEPTUKAJIBHBIX TPYBAX ITPU CMEIMAHHOW KOHBEKLHU

AnmoTatms—YHCICHHO HCCEAYeTCS BAMAHHE TCIUIONPOBOAHOCTH CTEHKH MPH CMEIIAHHOW KOHBEKLHH
Ha yCTOMYHBOE JJAMHHAPHOE TeYCHUE BOXLE B BEPTHKaIbHOMN Tpy6e. JIns notoka GsutH BeIGpaHbl GuKcH-
posannbie 3Hauenns yHcen Ilpanntns, Peitnonsaca u I'pacroga 7,0, 50 u-10000, cooTBeTCTBEHHO, M
6bL10 HaiizieHo, 4TO B GOJILIIMHCTBE PacCMAaTPHBAEMBbIX TeYeHHH CyllecTByeT npoTuBoTok. Mecnenosa-
HHS NPOBENCHH B [HANa30HaX NONYCTHMBLIX H3MCHEHHH OTHOWEHMH XKO3(QHUIMEHTOB TEMNONPOBOI-
HOCTH CTCHKH H XHIKOCTH, 3 TaKXe OTHOLUCHHH DaJMycoB BHYTPEHHEH M BHEIUHeH CTEHOK TpPyGbl.
CpaBHeHHE ¢ TEYCHHEM, IUIS KOTOPOrO HE PacCMaTPHBAETCA PELICHHE B MPHCTEHHON 0671acTH, NOKasbi-
BAa€T, YTO MpPH Y4YeTe MPACTCHROH 061aCTH MOTYT HAGMONATBCH OYEHb CYLUECTBEHHbE H3MEHCHHA B
pacnpeaeieHHaX NQTOKa H TEMNEPATYPhL.



