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Abstract-The effects of wall heat conduction on a steady laminar combined convection water 5ow in a 
vertical pipe are investigated numerically. The Prandtl, Reynolds and Grashof numbers of the Aow are 
5xed at 7.0, 50 and - 10000, respectively, and reverse flow is present in most of the flows considered. 
Investigations are carried out as the wall to 5uid conductivity ratio and the ratio of the outside to the 
inside radii of the pipe wall are allowed to vary. Comparisons with a flow in which no wall solution domain 
is considered show that very significant changes in the 5ow and temperature distributions may be observed 

when a wall domain is taken into account. 

1. INTRODUCTION 

IN MANY theoretical studies of convection flows in 
vertical ducts the conduction of heat in the wall of the 
duct is overlooked. In practice, especially when large 
temperature gradients are present, the temperature 
and temperature gradient at the inside of the duct wall 
are dependent not only on the thermal properties of 
the fluid and the characteristics of the flow, but also 
on the thermal conduction in the duct wall. Thus, in 
modelling many physical situations, it is desirable to 
consider a thermal problem in both the fluid and wall 
domains, as well as the momentum problem in the 
fluid. 

A review of laminar convection in ducts of various 
cross-sections is presented by Shah and London [l] 
and brief references are made to conjugate problems 
which allow for conductance in the wall of the duct. 
In recent years more attention has been paid to the 
importance of the interaction of the heat transfer 
mechanisms in the wall and fluid domains and good 
examples of this can be found in the investigations of 
Baroxzi and Pagliarini [2-4], Mot-i et al. [S, 61, Zariffeh 
et al. [7l, Faghri and Sparrow [8] and Campo and 
Range1 [9]. Baroxzi and Pagliarini assume a fully 
developed velocity profile in the fluid domain and 
avoid solving the thermal problem in the fluid domain 
by solving the energy equation in the wall using finite 
elements in an iterative procedure which involves the 
updating of the interfacial temperature after each iter- 
ation. The wall solution region in these investigations 
is restricted to the heat transfer section so that no 

account is taken of upstream and downstream heat 
conduction prior to and after the heat transfer region. 
This is also true of the work of Mori et al., where fully 
developed flow profiles are also assumed in cylindrical 
and parallel plate geometries, respectively. Here the 
problem is solved by assuming the interfacial tem- 
perature to be in the form of a power series and 
finding the unknown coetBcients by solving the energy 
equations in the solid and fluid and equating the tem- 
perature and heat tluxes at the interface. Zariffeh et 
al. and Faghri and Sparrow use a different approach 
which again involves the assumption of fully 
developed flow in the fluid. They both assume a thin 
wall, so the wall solution domain can be replaced by 
a suitable boundary condition at the extreme of the 
fluid domain and the elliptic energy equation in the 
fluid is solved using iterative techniques. Camp0 and 
Range1 make the assumptions of negligible tem- 
perature gradients in the wall and flmd domains and 
let the velocity profile in the fluid be represented by 
its mean value, and thus are able to solve the resulting 
ordinary differential equations using an analytic 
approach. The problem with the above investigations 
is the number of assumptions that are made in order 
to simplify the governing equations. In particular no 
attention is paid to the possible change of the velocity 
profile of the fluid due to the free convection effects, 
which must certainly be present in many industrial 
applications where large temperature gradients are 
often involved. 

Many investigations have been carried out into 
combined convection flows in which no account is 
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NOMENCLATURE 

radius of the inside of the duct wall Re Reynolds number. au,lv 
radius of the outside of the duct wall s power of Win the complimentary 
coefficient of x” sin sA in the expression function of equation (29) 
for 0, near Z = b/(a Re), R = at/a T temperature 
axial location of the beginning of the II axial velocity 
heated region u dimensionless axial velocity, u/u,,, 

constants in the expression for 8, V radial velocity 
near Z = b/(a Re), R = a*/a V dimensionless radial velocity, L‘;u, 
t~ansfo~ation parameter X local coordinate in the wall near 
position at which the scaling in the axial Z = b/(a Re), R = a*la 
direction is introduced axial coordinate 
friction factor k dimensionless axial coordinate, z/(a Re). 
particular integral of equation (29) 
acceleration due to gravity Greek symbols 
part of the complimenta~ function of molecular thermal diffusivity 
equation (29) ; coefEcient of thermal expansion, 
Grashof number, @( 7’, - T,)a’/v’ (- llp)GWTc) 
finite difference grid for 0 < Z < d, 8 dimensionless temperature, 
O,<R<l 4, = (Tr,, - T,)I(T, - T,) 
finite difference grid for 0 < 2 < d, 6,, f12, 0X three finite difference values of 0, 
1 4 R < a*ja immediately upstream of Z = b/(a Re), 
finite difference grid ford < 2 < co, R = a*/a 
O,<RCI Ic dimensional axial finite difference step on 
finite difference grid for d < Z < co, G” 
1 < R < a*ja 1 local coordinate in the wall near 
local heat transfer coefficient Z = b/(a Re), R = a*/a 
thermal conductivity of the fluid F dynamic viscosity of the fluid 
wall to fluid conduc~~ty ratio kinematic viscosity of the fluid 
number of finite difference steps across ; dimensionless axial coordinate on Gr, 
the duct l-l/(l+C(Z-d)) 
number of finite difference steps along P variable density of the fluid 
the duct PO density of the fluid at Tf = T, 
number of finite difference steps across Ik dimensionless stream function 
the wall II dimensionless vorticity. 
number of finite difference steps in the Z- 
direction on G; Subscripts 
local Nusselt number, ha/k entry value 
pressure f value within the fluid 
dimensionless pressure, m flow average value 

P~POU; -&b(Tx - r,) - W& NN value at the NNth axial location 
P&let number, Re Pr W value within the wall 
Prandtl number, v/a co fully developed value and the boundary 
radial coordinate temperature value over the final 
dimensionless radial coordinate, r/a section of the duct wall. 

taken of heat conduction in the wall, and three good 
examples of these in which the axial diffusion terms 
in the fluid are retained in the governing equations are 
in the papers of Zeldin and Schmidt [lo], Chow ef al. 
[ll] and Morton ef al. [12]. In these investigations, 
wall temperature or heat flux boundary conditions 
are applied at the extreme of the fluid domain. The 
governing elliptic equations are then non-dimen- 
sionalized, expressed in finite difference form and 
solved using relaxation techniques. In the studies of 

Chow et al. and Morton et al. situations are con- 
sidered where the duct walls are heated over finite 
sections and in the investigation of Morton et al. 
situations are considered where flow reversals are pre- 
sent at one or more places in the flow. 

The governing parameters in the conjugate heat 
transfer problems mentioned above are, the P&et 
number of the fluid, Pe, the ratio of the radii of the 
outside and the inside of the pipe wall, a*/a, the wall 
to fluid conductivity ratio, K,, and, where relevant, 
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the non-dimensional length of the heating or cooling 
sections. The governing parameters in the developing 
flow situations listed above are, the Reynolds number, 
Re, the Prandtl number, Pr, the Grashof number, 
Gr, and, where relevant, the length of the heating or 
cooling sections. 

In the present investigation, the work of Morton et 
al. [12] is extended and a solution is obtained to a 
conjugate heat transfer situation by solving the 
governing equations in the solid and fluid phases sim- 
ultaneously, by means of finite difference techniques 
and a relaxation procedure. Several realistic values of 
the ratio ~*/a are considered for values of K, relevant 
to various typical wall materials and with water as the 
fluid in the duct. The Reynolds and Grashof numbers 
of the flow are fixed for all the investigations so that 
comparisons can easily be made, and Gr is chosen to 
be large so that in most of the situations considered 
flow reversals are present in the fluid. 

The results are presented in terms of stream func- 
tion and temperature contours around the thermal 
entrance of the duct and also in terms of plots of 
flow average temperature, local Nusselt number and 
friction factor times Reynolds number against axial 
distance. The results illustrate the fact that by chang- 
ing the conductivity and thickness of a pipe wall the 
characteristics of the flow and the heat transfer may 
be drastically affected. 

2. THE MODEL AND GOVERNING 
EQUATIONS 

The model consists of steady laminar combined 
convection of a fluid with velocity, (u, u), and tem- 
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perature, Tf, in the semi-infinite domain 0 < r < a, 
0 < z < cc which is bounded by a wall contained in 
the domain u < r < o*, 0 <z c cc where the tem- 
perature is given by T,, as illustrated in Fig. 1. Ther- 
mal boundary conditions are applied at r = a*, so 
that the temperature at r = a, which is dependent 
upon the properties of both the fluid and the wall, is 
able to attain a distribution which is appropriate to a 
real physical situation. As a comparison, situations 
are also considered where the temperature boundary 
conditions are applied at r = a, and no wall solution 
domain is considered. However, the following analysis 
concentrates on the more complicated situation where 
the wall domain is included in the problem. Fluid at 
constant temperature, T,, is assumed to flow into the 
duct at z = 0 with a fully developed parabolic velocity 
profile, (0, u.), and the fluid is heated over z > b where 
b is chosen to be large enough so that the boundary 
condition at z = 0 is a good approximation to 
z= -co where the flow is fully developed and iso- 
thermal. Over the heated section of the tube, z > b, 
the temperature of the outside of the tube wall is 
maintained constant at T,, whilst over the preceding, 
‘entry’, section, 0 < z < b, a zero heat flux boundary 
condition is applied at the outside of the wall. 

The acceleration due to gravity, g, acts vertically 
downwards, in the opposite direction to the forced 
convection. The fluid is considered to be Newtonian 
with constant dynamic viscosity, thermal conduc- 
tivity, specific heat capacity and coefficient of expan- 
sion. The wall is considered to have a constant thermal 
conductivity. Density variations are neglected every- 
where except in the buoyancy term of the vertical 
momentum equation (Boussinesq approximation). 
These assumptions are made in order to keep the 

\ l ntry codit Ion*, 
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Schematic view of the mathematical model and the wall and fluid solution domains for the 
cylindrical duct. 

FIG. 1. 
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model as simple as possible, although inclusion of 
variations in some of the physical properties should 
not in theory be difficult to introduce into the numeri- 
cal analysis. Viscous dissipation in the fluid is ignored 
as it was shown to have only a small effect by Collins 

]l31. 
The governing equations are the continuity, axial 

momentum, radial momentum, and energy equations 
in the fluid and the energy equation in the wall, and 
these can be written, respectively, in the following 
form [14] : 

au au v 
&far+;=0 

ocity profiles and kr and k, are the thermal con- 
ductivities of the fluid and wall, respectively. 

The Boussinesq approximation involves replacing 
p by p,[l -/I(Tr- T,)] in the buoyancy term of equa- 
tion (2) and by p0 elsewhere. Here p0 is the density of 
the fluid at r, = T, and /I = (- l;p)(ap/87’,) is the 
coefficient of expansion with respect to T,. Now sim- 
plify equations (l)-(S) using the following non- 
dimensionalization : 

v = u, v, u = l&u, r = aR, -_=aRrZ 

p = gp,zWTm - Tel - 11-t pout f’. 

T,, = T, + U-c - T, )&.w J 

ug+vg= --iz+v [$+tg(r$)]-g 

(11) 

where U, is a characteristic velocity taken in this study 
to be the flow average velocity and Re = au,,& is the 

(2) Revnolds number of the flow. Defining the stream 
function, $, to satisfy the continuity equation (1) and 
introducing the vorticity, R. as follows : 

~=“!T? 
Re R dZ’ (12) 

(13) 

a2T 1 8 aT, o=* and eliminating the pressure between equations (2) 

+;ar 7 ( > 
(3 and (3), equations (l)-(5) reduce to the following 

non-dimensional form : 

where a is the molecular thermal diffusivity, v the 
kinematic viscosity, p the density and p the pressure (14) 
of the fluid. Equation (5) assumes a steady state and 

fiR+!-!-+$;$ 

zero heat generation within the wall. The boundary 
conditions for the problem are as follows : 

i a+ an i all/an fl a* i a32 ---_---_--= 
R azaR R aR az R2 az Re2 aR2 

au 
atr=O, O<Z<oC: V=O, g=O, T=O 

(6) 

atr=a, O<z<co: v=O, u=O, l a+ ao, i ati aor i 1 80,. ?%, i ae, ---_-__=- 
RaZdR RaRaZ Pr ke:dz?+R’+fR 

T, = Tf, k,%=k,z (7) (16) 

ar 
at r = a*, O<z<b: +=O 

(8) 

o__L_L_+!?$+!_~ (17) 

b<z<m: T,=T,J where Gr = gp(Te- T,)a’/v’ is the Grashof number 

at z = 0, and Pr = v/a the Prandtl number. Boundary con- 

O<r<a: v=O, u=u,, T,=T, 
ditions (6)-( 10) become : 

dTw 
(9) ae, 

a-cr<a’: -0 az 
atR=O, O<Z<cc: $=i, R=O, a=0 

(18) atz-rcc, 

O<r<a: v=O, u=u,, T,=T, 

dT 

I 

(10) at R= 1, alCl 0 o<z<co: lj=o, a= 

a-er<a’: -2 = 0. 
dZ 

correspond to parabolic vel- 
0 =e W fr K!?!!dE! (19) 

The velocities u, = u, ’ c3R iiR 
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at R = a*/a, 0 < Z c b/(a Re) : 
ser 
z = 0 

I 

(20) 

b/(a Re) < Z < m : e, = 0 

at Z = 0, 

0 $3 G 1 : $ = :(l -R*)*, R = 4R, of = 1 

ae,_ l<R<a*/a: -0 az 

(21) 

asZ-*co, 

OsR91: JI=;(l-R*)*, R=4R, or=0 

l<R<a*la: dB,_O 
az- 

(22) 

where K, = kdk, is the fluid to wall conductivity ratio. 
The elliptic equations (14)-(17) give the desired 

description of the problem under consideration and 
they must be solved subject to boundary conditions 
(18)-(22). The governing parameters in the problem 
are thus the Reynolds number, Re, the Prandtl 
number, Pr, the ratio of the Grashof to the Reynolds 
number, Gr/Re, the fluid to wall conductivity ratio, 
K,, and the ratio of the radii of the outside and the 
inside of the tube wall, a*/a. 

3. THE SOLUTION TECHNIQUE 

In order to satisfy boundary conditions (22) when 
solving the above problem a scaling is used in the axial 
direction. This scaling, as used in Keen [14], Morton 
et al. [ 121 and Zeldin and Schmidt [IO], is applied over 
the region d c Z c cc and is defined as 

t = 1-l/(l+C(Z-d)) or Z= (QC)/(l-l)+d 

(23) 

where l is a new axial variable which lies in the range 
0 < r < 1, C is a transformation parameter to be 
defined later and Z = d is a station far enough down- 
stream from Z = b/(a Re) for the differences caused 
by the wall to be negligible. Equations (14)-(17) under 
this transformation become 

a** 1 w 
faR2 -zaR (24) 

1 

1 

a*0 
’ de’ +$+z$g (26) 

a%, 
+=+;$. (27) 

The problem can now be split into four solution 
domains, these being 0 < Z < d, 0 d R d 1 where 
equations (14)-( 16) and boundary conditions (18), 
(19) and (21) for $, f’J and Br apply, d < Z < co, 
0 < R < 1 where equations (24)-(26) and boundary 
conditions (18), (19) and (22) for +, R and Br hold, 
0 Q Z < d, 1 < R < a*/a where equation (17) and 
boundary conditions (19)-(21) for 0, apply and 
d < Z < co, 1 < R G al/a where equation (27) and 
boundary conditions (19), (20) and (22) for 0, hold. 
To solve the problem these equations and boundary 
conditions are expressed in finite difference form on 
the four regular grids G’, GC, G” and G’“, where G 
covers the domain 0 < Z < d, 0 Q R < 1 and consists 
of N+ 1 points in the radial direction and NN+ 1 
points in the axial direction, GC covers the domain 
dcZ<co,O<R<landconsistsofN+lpointsin 
the radial direction and NC+ 1 points in the C-direc- 
tion, G” covers the domain 0 Q Z < d, 1 < R < a*/a 
and consists of N”+ 1 points in the radial direction 
and NN+ 1 points in the axial direction and GC” covers 
the domain d < Z < co, 1 c R < a*/a and consists of 
N” + 1 points in the radial direction and Ne + 1 points 
in the c-direction. The solutions on these two grids are 
matched up at Z = d and the value of the parameter C 
is chosen so that the step size between the axial 
locations Z,,,, and Z,,, , = d is the same as the 
distance between axial locations Z,,, , and Z,,. This 
leads to [ 121 

C = l/((N’- 1)K) (28) 

where K = d/NN is the finite difference step size in the 
axial direction on G’ and G”. 

Central differences are used in the radial direction 
for both first and second derivatives, however 
attempts to do the same in the axial direction produce 
oscillations in the solution. These oscillations are 
overcome by using either backward or forward differ- 
encing in the axial first derivative terms in the fluid, 
depending upon whether the flow at a particular point 
is in the same or the opposite direction to the forced 
convection, respectively. The vorticity of the fluid at 
the inside of the duct wall is determined to second- 
order accuracy using Taylor series expansions of $ 
and Q at R = 1, the fact that ag/aR = 0 at R = 1, 
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and equations (14) and (24) evaluated at R = 1. The 
temperature at the centerline is given to second-order 
accuracy using L%/2R = 0 at R = 0 and equations ( 16) 
and (26) evaluated at R = 0. The derivative thermal 
boundary condition at R = 1 is dealt with by using 
first-order differencing on each side of R = 1. the con- 
tinuity boundary condition at R = 1 is automatically 
satisfied by using the last point in the fluid as the first 
point in the wall and the zero heat flux boundary 
condition at R = a*iu for 0 < Z < b/(a Re) is satisfied 
by using first-order backward differencing. The solu- 
tion to the problem is obtained iteratively by sweeping 
across the grids G’, G’“, G: and G’” from Z = 0 to 
5 = 1, relaxing the relevant finite difference equations 
at each point on the four grids. In the calculations 
the finite difference equations for R and Br must be 
underrelaxed, those for 0, more so than those for R, 
however, a relaxation parameter of unity is used for 
the finite difference equations involving 1(1 and the 
finite difference equations for 0, are overrelaxed. 
Problems, in terms of accuracy and convergence, can 
occur at R = a*/a for the finite difference variable 
8,, just upstream of Z = b/(a Re), due to the dis- 
continuity in temperature gradient at this point. This 
is also found to cause convergence problems for the 
variable R on the inside of the duct wall in the vicinity 
of Z = b/(a Re). The inaccuracies are overcome in the 
following manner. Consider a new coordinate system, 
(A’, i.), inside the wall as shown in Fig. 2. In terms of 
the new coordinates equation (17) becomes 

^ o=~+_:~+~~. (29) I 

The particular integral, 0, =f(1), of equation (29) 
must be f = 0 in order to satisfy the two boundary 
conditions 0, = 0 for i. = 0 and &/8;. = 0 for 1 = n. 
To find the complimentary function put 6, = xjg(L), 
which leads to 

19, = x A,X' sin sj. (30) 

wheres = 1,2, 3j3,.. and the coefficients A, are to be 
determined from the boundary conditions. Hence to 

0(X’) 

0, = B, X’ ’ sin i.‘:! + B?X” ’ sin 3i.‘2 (31) 

where B, = A, ? and B2 = il, ‘. Putting i = rr. “ le 
finite difference value of 0, immediately upstr;.,-* ..)f 
Z = h:(a Re) can be expressed as 

(1, = B,K’ ‘-B+’ : (32) 

where K is the dimensional axial finite difference step 
on G’“. Now B, and B2 can be determined using 
the two finite difference values for 0, immediately 
upstream of 8, to give 

0, = 2’ ?f12-3 ’ Y, (33) 

where @I and 0, are as indicated in Fig. 2. Equation 
(33) gives an accurate value for 0, so long as K << 1. 
since this implies that X << 1. 

Despite the above refinements, problems with very 
slow convergence are encountered upstream of 
Z = b/(a Re) when K, becomes large (X 100). This is 
due to the fact that the ‘entry’ region between Z = 0 
and b/(a Re) is not long enough to allow the heat in 
the wall to conduct as far upstream as it would like. 
The thermal wall boundary condition (21) will there- 
fore be isolated causing inaccuracies and slow con- 

vergence. These problems could be overcome by intro- 
ducing a second scaled region going upstream to 
Z = - co, this, however, is beyond the scope of this 
investigation. For the above reasons the investigations 
in this study are restricted to situations for which 

K, < 50 where accurate solutions can be obtained. 
Convergence is assumed to have occurred when the 

average change in the finite difference variables 
between consecutive iterations has fallen below 10-R. 
This value is smaller than would normally be required 
because of the slow convergence of the variable R for 
the reasons discussed above. When the average change 
in all of the finite difference variables falls below lo- “, 

fluid domain 
Z = b/aRe 

I R-1 

ae 
boundary condltlonm _” = ,J ; boundary condit,on. 8" = 0 

ax i 

FIG. 2. Schematic view of the (X, L) coordinate system within the wall in the vicinity of Z = h,‘(u Re) and 
R = @la. 
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the maximum change in the variable Q is generally 
just below lo- 6. For some situations convergence may 
be achieved more quickly by using existing solutions 
as an initial guess for new calculations. 

4. RESULTS 

The results are presented in such a way that situ- 
ations with and without wall solution domains can be 
compared with each other for the same values of the 
parameters Re, Pr and Gr. Several realistic values of 
the ratio, a*/~, are considered for values of K, relevant 
to various typical wall materials and with water as the 
fluid in the duct. The Reynolds and Grashof numbers 
of the flow, Re and Gr, are fixed for all the inves- 
tigations at 50 and - 10000, respectively, and Pr is 
given the value 7.00, so that the fiuid can be thought 
of as being water. The Grashof number is chosen to 
be large so that in most of the situations considered 
flow reversals are present in the fluid. The value of 
b/(a Re) is chosen to he 0.5, so that the entry length 
is long enough for Z = 0 to be a good approximation 
to z- - co. The values for N, N’“, NN and NE are 
chosen to be 40, 20, 200 and 200, respectively. 
Calculations carried out with N = 20, N” = 10, 

No wall 

an/a 

c d 

: 

(al 

NN= 1OCiandN = 100, suggest that the above grids 
are sufficiently fine to give an accurate solution, 
and calculations carried out with N = 60, N” = 30, 
NN = 300 and M = 300, suggest that the results pre- 
sented here for the tern~mtu~ are correct to within 
about 6 x low4 in the fluid and 3 x 10w4 in the wall, in 
general, although at Z = b/(a Re), R = 1 the errors 
were found to be as large as 3 x 10-l. However, these 
errors had little effect on the rest of the solution. 

The parameter K, is chosen to have the values 50, 
5 and 0.5, and since the thermal conductivity of water 
is in the range 0.55-0.68 W m- ’ K- ’ [ 151, this covers 
wall materials with thermal conductivities in the range 
0.275-35.0 W m- ’ K-‘. This range covers pipe 
materials such as stainless steel, chrome steel and 
many plastics. Typical values of the ratio ~*/a, for 
piping in use in common industrial applications lie in 
the range 1. l-l .4 1161. Thus &/a is chosen to have the 
values 1.1,1.25 and 1.4, and nine results are presented, 
each with a different combination of the parameters 
K, and u*/a, and compared with a result obtained 
from a model in which the wall solution domain is 
omitted. 

In Figs. 3(a) and (b) contour plots of stream func- 
tion and non-dimensional temperature are displayed, 

No wall 1.1 

a'/a 

3 
(b) 

1.25 1.4 

FE. 3. Contour plots of stream function (a) and temperature (b) for K, = 50. as a+/a is varied. 
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respectively, for the case K, = 50. The streamlines 
plotted are for $ in the set (0.0, 0.05, 0.1.. . . 0.4. 
0.45, 0.5, 0.501, 0.502). where I/II = 0.0 is the stream- 
line along the wall, and the temperature contours 
are for Or.* in the set j&l. 0.2,. . . , 0.8, 0.91. where 
&,, = 0.9 is the contour nearest to the entrance of the 
pipe. The first plots are from the investigation with 
no wall solution domain and they are compared with 
plots obtained using solutions from the wall problem 
with a*/a = 1.1, 1.25 and 1.4, respectively. It can be 
seen from the temperature contours that the effect of 
the large value of Kr. is to conduct the temperature 
applied for Z > 0.5 a significant distance upstream. 
within the wall. This distance becomes greater as the 
value of a*/a increases. This upstream axial con- 
duction in the duct wall causes a significant pre-heat- 
ing of the water in the tube and this in turn means 
that the recirculation region at the centre of the pipe 
begins to form further upstream. 

In Figs. 4(a) and (b) K, is taken to be 5 and contour 
plots of $ and Br,, are again displayed. For these 
situations the effects of axial wall conduction are much 
less significant and, although a certain amount of 
upstream conduction can be seen to be present in the 
temperature contours, the effects of convection on the 

No wal 1. 

a*/a 

.25 

heat transfer process can be seen to have a major effect 
on the temperature distribution on the inside of the 
duct wall. In particular. for the case ~*:a = 1.4. 
the temperature contour O,.% = 0. I does not pass into 
the fluid until 2 >> 0.9. The beginning of the recircula- 
tion region is. as a result. moved further downstream. 
Comparing Figs. 3 and 4 it seems reasonable to 
assume that there will be a value of K, for which the 
streamlines and temperature contours remain 
approximately fixed as a*:~ is varied. In Figs. S(a) 
and (b) contour plots of ti/ and il,., are presented for 
Kr = 0.5 which corresponds to a wall material that is 
a relatively poor conductor. The penetration of the 
temperature can be seen to be very restricted from 
Fig. S(b) and this causes a more gradual development 
in the velocity profiles. Reverse flow is present for 
a+/a = 1 .l, the recirculation beginning at around 
Z = 0.92, however, no reverse flow at all is present in 
the flows for a*/~ = 1.25 and 1.4. The wall is in fact 
acting more like an insulator than a conductor, 
although a good insulating material would normally 
have K, c: 0.05 for these particular flows. 

The flow average temperature. O,, local Nusselt 
number, Nu, and friction factor. ,f, for the flows under 
consideration here are defined as follows [ 141: 

No xall 

. 

v . . . 
. . 
.._. 

. . . 

. 

- 

a’/a 

1.25 1.4 

FIG. 4. Contour plots of stream function (a) and temperature (b) for K, = 5, as a*/u is varied 
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No wall 

a’/a 

(a) 
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No nail 

. . 

. 

._ 

. . 

. . . 

. . . 

. . 

- 

(b) 

FIG. 5. Contour plots of stream function (a) and temperature (b) for K, = 0.5, as a*/a is varied. 

(34) 

Nu= -g 
I I 

VL-%= I) (35) 
R- I 

Ref = 8RI,, ,. (36) 

Plots of (!I,,,, Nu, and Ref, as defined by equations 
(34)-(36), respectively, are displayed in Figs. 6(a)-(c), 
respectively, for each of the flows displayed in Fig. 3. 
The flow average temperature is seen to be affected to 
a small extent just upstream of Z = 0.5, where the 
sharp drop in em is rounded off as a*/a increases. 
However, downstream the plots are almost indis- 
tinguishable as 8, falls away to 0. In Fig. 6(b) the 
local Nusselt number is seen to take a finite value well 
upstream of Z = 0.5, when the wall solution domain is 
included in the problem. At first Nu becomes negative 
because 0l,_ , > em, however, at some point for 
Z < 0.5 the sign of 0, - OIR = , changes from negative 
to positive and Nu becomes infinite and changes sign, 
as can be seen from Fig. 6(b). A further peak is 
observed in Nu at Z = 0.5, where a rapid decrease 

in ezW at the inside of the wall causes the value of 
(a&/aR), _ , to increase very quickly. Beyond Z = 0.5 

very little difference in the plots can be observed, as 
the values decrease towards the usual fully developed 
value of 1.83 for a flow without a wall solution 
domain. From Fig. 6(c) the value of Ref is seen to rise 
earlier from its fully developed value of 32 as a*/a is 
increased. This is as would be expected, because the 
axial conduction in the pipe wall causes the velocity 
profile in the fluid to start developing upstream of 
z = 0.5. 

In Figs. 7(a)-(c), f?,,,, Nu and Ref are displayed, 
respectively, for the flows described in Fig. 4. The 
value of 0, is seen to decrease more slowly as a*/a is 
increased in Fig. 7(a). This is as would be expected 
from the temperature plots in Fig. 4(b). In Fig. 7(b) 
the behaviour of Nu is similar to that observed in Fig. 
6(b), however, the singularities occur much closer to 
Z = 0.5 since the effects of axial wall conduction are 
much less for these flows. The fully developed values 
are seen to be slightly lower than the value of 1.83 
from the flow without a wall solution domain. The 
values of Ref in Fig. 7(c) illustrate the slower devel- 
opment of the velocity profile as a*/a is increased, 
as would be expected from the streamline plots in 
Fig. 4. 

In Figs. 8(a)-(c), B,,,, Nu and Ref are displayed, 
respectively, for the flows described in Fig. 5. For each 
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0.1 8.D 10.0 z mO.c 

FIG. 6. Plots of flow average temperature, local Nusselt number and friction factor times Reynolds number 
against axial distance for K, = 50 and the indicated values of u*/u. 

(al I I (b) rao, 7 

NU 

Ref a-/e 
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EUO- . . . . . . . . . . . . . . . . . ,. , 

------- 1.25 

Ml.0 - ------___I. 1.4 
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no wall 

20.0 - 

0.0 _ ’ I 
at 1.0 le.0 Z tG#.0 

FIG. 7. Plots of flow average temperature, local Nusselt number and friction factor times Reynolds number 
against axial distance for K, = 5 and the indicated values of a*/u. 

of @,, Nu and Ref, the trends recognized in Fig. 7 are the thermal boundary conditions are applied at the 
continued to a much greater extent, as the velocity outside of a wall solution domain, inside which the 
and temperature profiles develop more slowly due to temperature is allowed to vary in both the axial and 
the lower value of K,. radial directions. Solutions are obtained for values of 

the kid to wall conductivity ratio, K,, in the range 
OS-SO, and for values of the ratio of the outside to 

5. CONCWSIONS 
the inside radii of the wall, a*/a, in the range 1. l-l .4. 
The Aows and temperature distributions are seen to 

In this paper, solutions to a combined convection be greatly dependent upon the value of ic;, with sig- 
flow in a cylindrical geometry are obtained, when nificant upstream effects being observed for large 
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FIG. 8. Plots of flow average temperature, local Nusselt number and friction factor times Reynolds number 
against axial distance for K, = 0.5 and the indicated values of a*/a. 

values of Kr and significant downstream effects being 
observed for small values of K,. These effects were 
found to be exaggerated for larger values of the ratio 
a*/a. 

In the recent literature on conjugate heat transfer 
problems many assumptions are inherent in the math- 
ematical representations and in particular, no account 
is taken in any of the investigations of the devel- 
opment of the velocity profile within the fluid due to 
the effects of free convection. In this paper the full 
elliptic equations, in both the fluid and wall domains, 
are solved for the first time and results are presented 
for situations where flow reversals are present. The 
conclusion to be drawn from this investigation is that 
in many situations the wall of the flow domain may 
play a significant part in the characteristics of both 
the flow and the heat transfer. Careful thought must 
be taken before discarding the wall domain from the 
thermal problem, especially with the Reynolds num- 
ber of the flow is relatively low. 
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P. J. HEGGS et ai 

EFFETS DE LA CONDUCTION THERMIQUE DANS LA PAR01 SUR LE 
DEVELOPPEMENT DES ECOULEMENTS AVEC RETOUR COMBINES DE CONVECTION 

DANS DES TUBES VERTICALIS 

R&urn&On etudie numirtquement les etlets de la conduction themtique sur un ecoulcment d‘eau 
laminatre. permanent. mixte et couple. Les nombres de Prandtl. Reynolds et Grashof sont respectivement 
fixes a 7.0. 50 et - 10000 et le renversement d’ecoulement est present dans la plupart des ecoulcmcnt\ 
consider&. Des essais sont faits en rendant variables le rapport des conductivites paroi fuide et Ic rapport 
des rayons extremes de la paroi. Des comparaisons avec un ecoulement dans lequel on ne considere pas 
I’influence de la paroi montrent que des changements tres sensibles sont obtenus dans I’ecoulemcnt et dans 

les distributions de temperature quand on prend en compte I’influence de la pare. 

EINFLijSSE DER WiiRMELEITUNG IN DER WAND EINES SENKRECHTEN ROHRES 
AUF DIE AUSBILDUNG VON GEMISCHT-KONVEKTIVEN 

REZIRKULATIONSSTRC)MUNGEN 

Zusammenfassung-Der Einflul3 der Warmeleitung in der Wand eines senkrechten Rohres auf dte stationare 
laminare gemischte Konvektionsstrijmung von Wasser wird numerisch untersucht. Die Prandtl-. Reynolds- 
und Grashof-Zahl wird mit 7.0. 50 bzw.- 10000 angenommen. In den meisten der betrachteten Falle tritt 
eine Riickstrijmung auf. Die Untersuchungen werden fur unterschiedliche Verhaltnisse der Warme- 
leitfahigkeit von Fluid und Wandmaterial sowie fur unterschiedliche Verhaltnisse von AuBen- und 
Innendurchmesser durchgefiihrt. Vergleichende Rechnungen ohne Einbeziehung des Wandbereiches 
zeigen, daR dessen Beriicksichtigung signifikante Anderungen der Striimungs- und Temperaturverteilung 

hervorruft. 

BJMRHWE TEI-IJIOITPOBOAHOCTT4 CTEHKH HA PA3BMTME I-IPOTMBOTOLIHbIX 
TE’4EHMfl B BEF’THKAJIbHbIX TPYEAX I-IPW CMEUIAHHOfl KOHBEKIJHM 

Asmo~auwt--%icnetuto HccnenyeTcn nnstnmse Ten.nonpoeonnocrri cretitcx npn chiemaHnol Korftsetrumi 
Ha ycrOlqHBoenaMHlIapHoeTeqCHHeBOLlbIB ~TAKUlbHO$iTpy6e.&lK IlOTOKa 6w~tii eta6pam.t I$&fKCW 

p0eamme 3HaqemR yllcen ITpmnn, PefSHonbnca H Fpacro*a 7,0, 50 ~-10000, coo-rnercrBetftto, ii 
6bmo Ha&tesio,=rTo B 6ommmicree paCcMaTpnnaeMblx TeveHHii cyuwr~yrr IIPOTHBOTOK. Mccnenosa- 

HHK npoeexeHv B miana30HaX nonyclgMbut H3MeHeHHfi OTHOIIleHHk K03l#@HUHeHTOB TenJlOn~BO~- 

HOCTH CTeHICW Ii EHJ&KOCTli, a TaKlKe OTHOUleHHii PaiUQ'COB BHyTPeHHefi Si BHeUIHCii CTeHOK Tpy6bl. 

CpaBHeHHe c Teqeriraehs, ana KoToporo He pacch3aqwfnaetrca peruewe B IlpHCTeHHOfi 06naCTH, noKa3bI- 

BaeT, ST0 npH )“teTe t’ljJXiCTeHHOii 06JUiClll MOQ’T Ha6JIiOnaTbCs OYeHb CyIWCTBeHHble H3hleHeHEiK B 

pacnpeneneminx noToKa si TehmepaTyphs. 


